sábado, 25 de diciembre de 2010

Tributo a un pequeño gran hombre


(Ulm, 1879 - Princeton, 1955) Científico estadounidense de origen alemán. En 1880 su familia se trasladó a Munich y luego (1894-96) a Milán. Frecuentó un instituto muniqués, prosiguió sus estudios en Italia y finalmente se matriculó en la Escuela Politécnica de Zurich (1896-1901). Obtenida la ciudadanía suiza (1901), encontró un empleo en el Departamento de Patentes; aquel mismo año contrajo matrimonio.
En 1905 publicó en Annalen der Physik sus primeros trabajos sobre la teoría de los quanta, la de la relatividad y los movimientos brownianos, y llegó a profesor libre de la Universidad de Berna. En 1909 fue nombrado profesor adjunto de la de Zurich y en 1910 pasó a enseñar Física teórica en la Universidad alemana de Praga. Luego dio clases de esta misma disciplina en la Escuela Politécnica zuriquesa (1912). En 1913, nombrado miembro de la Academia de Prusia, se trasladó a Berlín. En 1916 se casó en segundas nupcias. Publicó entonces Die Grundlage der allgemeinen Relativitätstheorie e inició una serie de viajes a los Estados Unidos, Inglaterra, Francia, China, Japón, Palestina y España (1919-32).
En 1924 entregó a la imprenta Über die spezielle und die allgemeine Relativitätstheorie y el año siguiente recibió el premio Nobel por su teoría sobre el efecto fotoeléctrico. En 1933 abandonó la Academia de Prusia y se enfrentó valerosamente a Hitler. Iniciada la persecución nazi contra los judíos, marchó a América y enseñó en el Instituto de Estudios Superiores de Princeton (Nueva Jersey). En 1945 se retiró a la vida privada, a pesar de lo cual prosiguió intensamente su actividad científica.
Einstein es uno de los grandes genios de la humanidad y en el ámbito de las ciencias físicas ha llevado a cabo una revolución todavía en marcha y cuyos alcances no pueden medirse aún en toda su amplitud. En su primera formulación (teoría de la relatividad restringida) extendió a los fenómenos ópticos y electromagnéticos el principio de relatividad galileo-newtoniano, anteriormente limitado sólo al campo de la Mecánica, y afirmó la validez de las leyes de esta última tanto respecto de un sistema galileano de referencia K, como en relación con otro de referencia K' en movimiento rectilíneo y uniforme respecto de K.
Según las teorías de Einstein, la ley de la propagación de la luz en el vacío debe tener, como cualquier otra general de la naturaleza, la misma expresión ya referida, por ejemplo, a una garita ferroviaria o a un vagón de tren en movimiento rectilíneo y uniforme en relación con ésta; dicho en otros términos, la velocidad de la luz no se ajusta a la de los sistemas de referencia que se mueven en línea recta y de manera uniforme respecto del movimiento de la misma luz. En realidad, el experimento de Michelson-Morley, mil veces repetido y comprobado a partir de 1881, había demostrado la diferencia existente entre la velocidad de la luz y la de la Tierra.
La relatividad restringida ofrece la razón de tal hecho, antes inexplicable. A su vez, la invariabilidad de la velocidad de la luz lleva a la introducción, en Física, de las transformaciones de Lorentz, según las cuales la distancia temporal entre dos acontecimientos y la que separa dos puntos de un cuerpo rígido se hallan en función del movimiento del sistema de referencia, y por ello resultan distintas para K y K'. Ello nos libra, en la formulación de las leyes ópticas y electromagnéticas, de la relación con el hipotético sistema fijo "absoluto", rompecabezas metafísico de la Física clásica, puesto que tales leyes, como aparecen formuladas en la relatividad restringida, valen para K e igualmente para K', lo mismo que las de la Mecánica.
El tránsito de la Física clásica a la relatividad restringida representa no sólo un progreso metodológico. Esta última, en efecto, presenta -como observa Einstein (Sobre la teoría especial y general de la relatividad)- un valor heurístico mucho mayor que el de la Física clásica, por cuanto permite incluir en la teoría, como consecuencia de ella, un notable número de fenómenos, entre los que figuran, por ejemplo, la aparente excepción en la relación de la velocidad de la luz con la de una corriente de agua en el experimento de Fizeau; el aumento de la masa de los electrones al incrementarse las velocidades de éstos, observado en los rayos catódicos y en las emanaciones del radio; la masa de los rayos cósmicos, cuarenta mil veces superior a la de la misma en reposo; el efecto Doppler; el efecto Compton; la existencia del fotón y la magnitud de su impulso, previstas por Einstein y comprobadas luego experimentalmente; la cantidad de energía requerida por las masas de los núcleos para la transmutación de los elementos; la fina estructura de las rayas del espectro, calculada por Sommerfield mediante la Mecánica relativista; la existencia de los electrones positivos, prevista por Dirac como solución a ciertas ecuaciones procedentes de la Mecánica de la relatividad; el magnetismo de los electrones, calculado por Dirac con la transformación de las ecuaciones de Schrödinger en las correspondientes de la Mecánica relativista, etc.
Una de las consecuencias de la relatividad restringida es el descubrimiento de la existencia de una energía E igual a mc2 en toda masa m. Esta famosa y casi mágica fórmula nos dice que la masa puede transformarse en energía, y viceversa; de ahí el memorable anuncio hecho por Einstein hace cincuenta años sobre la posibilidad de la desintegración de la materia, llevada luego a cabo por Fermi.
Sin embargo, la relatividad restringida no elimina el sistema fijo absoluto del campo de la Física de la gravitación. Tal sistema, en última instancia, nace del hecho por el cual la relatividad restringida admite aún, en la formulación de las leyes de la naturaleza, la necesidad de situarse bajo el ángulo de los sistemas privilegiados K y K' ¿Qué ocurriría de ser formuladas las leyes físicas de tal suerte que valieran también para un sistema K" en movimiento rectilíneo no uniforme, o bien uniforme pero no según una línea recta? Aquí la distinción entre campo de inercia y de gravitación deja de ser absoluta, puesto que, por ejemplo, respecto de varios individuos situados en un ascensor que caiga de acuerdo con un movimiento uniformemente acelerado, todos los objetos del interior del ascensor se hallan en un campo de inercia (quien dejara suelto entonces un pañuelo vería cómo éste se mantiene inmóvil ante sí), en tanto que para un observador situado fuera, y en relación con el cual el aparato se mueve con un movimiento uniformemente acelerado, el ascensor se comporta como un campo de gravitación.
La relatividad general es precisamente la Física que mantiene la validez de las leyes incluso respecto del sistema K". El postulado de ésta tiene como consecuencia inmediata la igualdad de la masa inerte y de la ponderal, que la Física clásica había de limitarse a aceptar como hecho inexplicable. Con la relatividad general, la Física alcanza el mayor grado de generalidad y, si cabe, de objetividad. ¿Qué ley natural, en efecto, es válida para sistemas de referencia privilegiados? Ninguna, en realidad. Las leyes naturales deben poder ser aplicables a cualquier sistema de referencia; es ilógico pensar, por ejemplo, que la Física no resulta admisible dentro de un ascensor que caiga con un movimiento uniformemente acelerado o en un tiovivo que gire.
La relatividad general comporta la previsión teórica de numerosos hechos; así, por ejemplo: la desviación de los rayos luminosos que se aproximan a una masa; la traslación de las rayas espectrales; la del movimiento perihélico de Mercurio, etc. La experiencia ha confirmado plenamente estas previsiones teóricas.
Durante los últimos años de su existencia, Einstein fijó los fundamentos de una tercera teoría, la del "campo unitario", que unifica en un solo sistema tanto las ecuaciones del ámbito electromagnético como las del campo de la gravitación. El desarrollo ulterior de esta teoría, dejada por el sabio como herencia, permitirá seguramente la obtención -según observa Infeld, discípulo de Einstein- no sólo de las ecuaciones de ambos campos, sino también de las correspondientes a la teoría de los quanta. Entre sus obras deben destacarse Las bases de la teoría general de la relatividad (1916); Sobre la teoría especial y general de la relatividad (1920); Geometría y experiencia (1921) y El significado de la relatividad (1945).


No hay comentarios: